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We propose fractional spin Hall effect �FSHE� by coupling pseudospin states of cold bosonic atoms to
optical fields. The present scheme is an extension to interacting bosonic system of the recent work �X.-J. Liu,
X. Liu, L. C. Kwek, and C. H. Oh, Phys. Rev. Lett. 98, 026602 �2007� and S.-L. Zhu, H. Fu, C.-J. Wu, S.-C.
Zhang, and L.-M. Duan, Phys. Rev. Lett. 97, 240401 �2006�� on optically induced spin Hall effect in nonin-
teracting atomic system. The system has two different types of ground states. The first type of ground state is
a 1/3-factor Laughlin function and has the property of chiral-antichiral interchange antisymmetry, while the
second type is shown to be a 1/4-factor wave function with chiral-antichiral symmetry. The fractional statistics
corresponding to the fractional spin Hall states are studied in detail and are discovered to be different from that
corresponding to the fractional quantum Hall �FQH� states. Therefore the present FSHE can be distinguished
from FQH regime in the measurement.
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I. INTRODUCTION

Intrinsic spin Hall effect �SHE� has attracted great atten-
tion since it was predicted in semiconductors with spin-orbit
coupled structures,1–4 with the concomitant creation of spin
currents and realization of quantized spin Hall conductance
�SHC�. Quantum SHE with noninteracting particles was first
studied in graphene5,6 and semiconductors with a strain gra-
dient structure,7 while by now there are no experimental sys-
tems available for such proposals. Recently, Bernevig et al.8

theoretically predicted the quantum SHE in HgTe/CdTe
quantum wells. By varying the thickness of the quantum
well, a quantum phase transition is obtained between the
conventional insulator and the quantum spin Hall �QSH� in-
sulator. Such a prediction has been remarkably confirmed in
the recent experiment.9 The QSH insulator is a topologically
nontrivial state of matter protected by the time-reversal sym-
metry, and it is currently described through a Z2
classification.5,6,10 Considering the nontrivial topological
properties, such QSH insulators may have not only potential
applications and but also the fundamental importance in
physics.

On the other hand, the similar idea for the SHE has been
proposed in cold noninteracting atomic system by coupling
the internal atomic states �atomic spins� to radiation.11,12 The
atom-light coupling creates a spin-dependent effective mag-
netic field, leading to SHE in fermionic atomic systems. A
challenging but interesting extension is the realization of
fractional spin Hall �FSH� regime with the particle-particle
interactions considered. The correlated many-body function
in the FSH regime was initially described in Ref. 7. Never-
theless, many issues are left in the fractional spin Hall effect
�FSHE�, e.g., the fractional statistics corresponding to the
FSH state is not clear and needs to be further investigated.
Comparing with solid matters, ultracold atomic system pro-
vides a unique access to the study of complex many-body
dynamics with its extremely clean environment and remark-
able controllability in the parameters. Therefore it is very
suggestive to study the FSHE by extending optically induced

SHE �Refs. 11 and 12� to interacting bosonic atomic systems
where, different from former schemes with the non-
interacting atomic gas, the nonlinear interaction between at-
oms �s-wave scattering� plays a central role in the Hall ef-
fect.

In this paper, we propose FSHE by coupling internal elec-
tronic states of cold bosonic atoms to the external optical
fields, with atom-atom interaction considered. Under the
lowest Landau-level �LLL� condition, we can exactly study
the ground states of the present many-body system. The in-
triguing fundamental properties of FSH states and the corre-
sponding fractional statistics in our system are investigated.

The paper is organized as follow. In Sec. II, we derive the
effective Hamiltonian that gives FSHE. Then in Sec. III, we
study the FSH state and corresponding quasiparticle excita-
tion, with which we point out differences between the
present FSH regime and the FQH regime. Realization of the
FSHE in realistic atomic systems is discussed in Sec. IV.
Finally we conclude our results in Sec. V.

II. EFFECTIVE HAMILTONIAN

In this section we shall study two different configurations
to obtain the effective Hamiltonian that gives the FSHE in
the cold atoms.

A. Four-level configuration

We first consider the four-level configuration shown in
Fig. 1�a�. An ensemble of cold bosonic atoms with four in-
ternal angular momentum states �atomic spins�, described by
atomic state functions ���r , t� ��=e� ,s��, interact with two
external light fields. The transitions from �s�� to �e�� are,
respectively, coupled by a �− light with the Rabi-frequency
�1=�10 exp�i�k1 ·r+ l1��� and by a �+ light with the Rabi-
frequency �2=�20 exp�i�k2 ·r+ l2���, where k1,2=k1,2êz and
�=tan−1�y /x�, and l1 and l2 indicate that �+ and �− photons,
respectively, have the orbital angular momenta �l1 and �l2
along the +z direction.13 It is convenient to introduce the
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with the atomic operators defined by Se�e�
= �e���e��, S1+

= �e+��s+�, S2+= �e−��s−�, and S�+
† =S�−. V�r� is the external

trap potential. The s-wave scattering potential is character-
izes via U���r�= �4�2a�� /m���3��r−r��, with a�� as the
scattering length.

The interaction Hamiltonian �H1+H2� can be diagonal-
ized with a local unitary transformation. Similar to the
former results,11 here we consider the large detuning case,
i.e., � j

2�� j0
2 . In this way, spontaneous emission is sup-

pressed by introducing the adiabatic condition14 that the
population of the higher levels is adiabatically eliminated,

and the total system is restricted to the two ground states �S−�
and �S+�. Under the present adiabatic condition Hamiltonian
�1� can be written in an effective form which involves only
the two ground states:
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Here the vector and scalar potentials induced by the atom-

light couplings are11 A−=−A+=A=�lce−1�0
2

�2 �xêy −yêx� /�2

and �neglecting constant terms� V��r�=Veff�r�=V�r�
−��0

2 /�−�2l2�0
4 / �2m�4�2�, with �=�x2+y2. In the above

calculations we have set �1=�2=�, �10=�20=�0, and l1
=−l2= l, i.e., the angular momenta of the two light fields are
opposite in direction. Generally, we assume the total atomic
number is N=N++N−, where N� are the numbers of atoms in
states �S��. To facilitate further discussion, we describe here
the effective Hamiltonian in the N-particle case:
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FIG. 1. �Color online� �a�
Four-level bosonic atoms interact-
ing with two light fields; this case
can be experimentally realized
with, e.g., 87Rb atoms ��b� and
�c��; �d� Initial condition achieved
by pumping the atoms into �S��
with ��+�= ��−� through the
�-type configuration.
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For convenience, in this paper we shall consider the spin-
independent s-wave scattering, say, a��=a�const, indepen-
dent of � ,�. Practically, we apply two columnar spreading
light fields that �01�r�=�02�r�= f� with the coefficient f
�0. This kind of fields can be created by, e.g., high-order
Bessel beams.13 Further, we set a two-dimensional �2D� har-
monic trap by V�r�= 1

2m	�
2 �2, so the scalar potential reads

Veff�r�= 1
2m	eff

2 �2, where 	eff
2 =	�

2 − �1+ �l2f2

2m�3 � 2�f2

m� . Note the
atomic numbers in spin-up and spin-down states are deter-
mined by initial condition that can be controlled in experi-
ment. Here we would like to assume N�=N /2. Finally, we
can apply a tight harmonic confinement along z axis with
frequency 	z such that z-axial ground-state energy far ex-
ceeds any other transverse energy scale, yielding a quasi-2D
system.15 With these considerations we can further obtain the
effective Hamiltonian by
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g̃��2��r j

� − rk
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Here g̃=a�8�3	z
2 /m is the 2D interaction strength, the an-

gular momentum part reads as

HL
� = � �1 − ��eBLz

�/4mc , �5�

with the total angular momenta of atoms in spin states �S��:
Lz
�=� j=1

N/2Ljz
� and �= �1+

4m2�4	eff
2

�2l2f4 �−1/2 equivalent to the “rota-
tion rate” of fractional quantum Hall effect �FQHE� in rotat-
ing bosonic systems16–19 that has been widely studied in re-
cent years, and

B =
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�2	1 +
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2
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1/2

�6�

characterizes the optically induced magnetic field. From for-
mula �4� one can see the key difference between our model
and FQHE in the rotating Bose-Einstein condensates �BECs�

�Refs. 16–19� is that here atoms experience spin-dependent
effective magnetic fields �B−=−B+=Bêz�. In the rotating
bosonic atomic system, even the atomic spin degree is con-
sidered, all different spin states are in the same rotating di-
rection, thus experience only a single �spin-independent� ef-
fective magnetic field. It is also noteworthy that the charge
Hall effect system or rotating bosonic atomic system is P
invariant but T breaking. However, our system is both P and
T invariants.

B. Double �-type configuration

In this subsection we consider another situation, say the
double �-type configuration �see Fig. 2�a�� to reach effective
Hamiltonian �4�. The transitions from �s�� to �e�� are, re-
spectively, coupled by a �+ light with the Rabi frequency
�1=�10 exp�i�k1 ·r+ l1��� and by a �− light with the Rabi
frequency �2=�20 exp�i�k2 ·r+ l2���, where k1,2=k1,2êz and
�=tan−1�y /x�. Different from the former situation, here the
couplings are resonant. Besides, we apply the third strong 
laser field with �c=�c0 exp�ikc ·r� that couples both transi-
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FIG. 2. �Color online� �a�
Double �-type bosonic atoms in-
teracting with two light fields
��1,2� with orbital angular mo-
mentum and one strong field �c;
�b� this situation can be experi-
mentally realized with, e.g., 87Rb
atoms. The Zeeman splitting is
considered.
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+ H.a.� . �7�

It is easy to check that both H�1
and H�2

have three
eigenstates, i.e., one dark state and two bright states:20,21

�D1� = cos �1�s+� − sin �2e−il1��c+� ,

�B1�� = ��e+� � �sin �1�s+� + cos �2e−il1��c+���/�2,

for H�1
and

�D2� = cos �2�s+� − sin �2e−il2��c+� ,

�B2�� = ��e+� � �sin �2�s+� + cos �2e−il2��c+���/�2,

for H�2
, where the mixing angles are defined via tan �1,2

= ��1,2� /�c0. The corresponding eigenvalues are ED1,2
=0,

EB1�
=���c0

2 +�10
2 , and EB2�

=���c0
2 +�20

2 . For our pur-
pose we require the full system is trapped in the dark-state
subspace �D1,2� �a pseudospin-1/2 space�, which excludes the
excited states. This can be achieved when the laser fields are
sufficiently strong so that the eigenvalues of the bright states
are far separated from that of the two dark states. Under this
condition Hamiltonian �7� can be written in the effective
form which involves only the two dark states:

H =� d3r
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Here the vector potentials are calculated by A1,2
= i�c /e�D1,2�� �D1,2�=�l1,2ce−1 sin2 �1,2�xêy −yêx� /�2. Simi-
lar as before, we set l1=−l2= l and �01�r�=�02�r�= f�, while
�c0 is constant satisfying �c0

2 � ��1,2�2. Under this condition
one can find the dark states �D1,2���s�� and the vector po-
tentials are followed by A2=−A1=A=�f2lce−1�c0

−2�xêy
−yêx�. Accordingly, the scalar potentials are obtained by
V1,2�r�=Veff�r��V�r�−�2l2f4 / �2m�c0

4 �.
Although a straightforward generalization from the three-

level � configuration,22,23 the nontrivialness of the present
double � bosonic system with spin-dependent gauge field is
protected by the result of quantum SHE whose integer ver-
sion is identified to be of Z2 topology.5,6 Again, we consider
the spin-independent s-wave scattering, say, a��=a�const,
and equal numbers of atoms �N1=N2=N /2� in the states
�D1,2�. When a tight harmonic confinement is applied along z
axis, we can rewrite the above effective Hamiltonian by

H = �
j=1

N/2
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g̃��2��r j
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The parameters in above formula can be similarly obtained
as done in Eqs. �5� and �6�, say g̃=a�8�3	z

2 /m, the angular
momentum part H1L,2L=� �1−��eBLz

� /4mc with the total
angular momenta of atoms in pseudospin states �D1,2�: Lz

�

=� j=1
N/2Ljz

� and �= �1+
4m2�c0

4 	eff
2

�2l2f4 �−1/2, and B= �lc
e

f2

�c0
2 �1

+
4m2�c0

2 	eff
2

�2l2f4 �1/2. It is clear that effective Hamiltonian �9� is
equivalent to that obtained in Eq. �4�.

III. FSH STATE AND QUASIPARTICLE EXCITATION

Atoms in different spin states experience the opposite
magnetic fields B�. This leads to a Landau-level structure for
each spin orientation. Together with the nonlinear interac-
tions between spin states, Hamiltonian �4� or �9� describes a
FSHE in the bosonic system.

A. FSH state

In this subsection we shall first derive the FSH states for
our system, and then in Sec. III B we shall discuss the related
quasiparticle excitation. For this we consider the large opti-
cal angular momentum condition so that 	eff�	=eB /mc,
then we approach the limit �→1, which, in fact, corre-
sponds to the fast rotating condition in usual bosonic atomic
systems. In this way, the energy scales characterizing Hamil-
tonian HL

� are much smaller than those corresponding to
other parts of H. Besides, we consider the case that atomic
interaction energy is smaller than the energy spacing be-
tween two neighbor Landau levels. The two restrictions lead
to LLL condition in our system �we shall return to the valid-
ity of this approximation later�. The ground state and el-
ementary excitations of Eq. �4� will then lie on the subspace
of common zero energy eigenstates of H−HL

�.17,18 For this
we can write down the many-body function of the present
system as

��z,��� = P�z1,z2, . . . ,zN/2;�1
�,�2

�, . . . ,�N/2
� �

� �
j,k

e−�zj�
2/2−��k�2/2, �10�

where z=x++ iy+ and �=x−+ iy− are, respectively, the coor-
dinates of atoms in states �S+� and �S−� and P�z ;��� is a
polynomial in all atomic coordinates. Denoting �zij ,Zij� and
��ij ,Wij� as the relative and center mass coordinates of
spin-up and spin-down atoms and �tij ,Tij� as the relative and
center mass coordinates of the ith spin-up and the jth spin-
down atoms, we can expand the polynomial as
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P�z;��� = �
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fmgnhk�
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�kl
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N/2
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w . �11�

To ensure the function ��z ,��� is a zero eigenstate of the
nonlinear interaction Hamiltonian, f0, g0, and h0 must be
zero. Furthermore, the interchange symmetry of bosonic at-
oms determines that m ,n must be even integers. Then, zij

2 and
�ij

�2 are the factors of Eq. �11�, and we can rewrite the many-
body wave function by

��z,��� = Q�z,����
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where w�1 is an arbitrary positive integer. The similar state
has been studied in the electronic system.7 Formula �12� can
be divided into two basic types of many-body functions de-
pending on w takes odd integers �first type� and even integers
�second type�, respectively. It is easy to see the first type of
function is antisymmetric upon the interchange z↔�� re-
flecting the �S+� chiral–�S−� chiral antisymmetry, while the
second type is symmetric upon the interchange z↔�� that
reflects the �S+� chiral–�S−� chiral symmetry. HL

� can be di-
agonalized within the truncated Hilbert space specified by
Eqs. �10� and �12�. In our model, it is interesting that when
Q�z ;��� is a homogeneous polynomial in zij, �ij

� , and tij, the
wave function ��z ,��� is an eigenstate of HL

++HL
− with the

eigenvalue,

EL = �1 − ��eB�M+ − M−�/4mc . �13�

Note M+�0 �in the +z direction� and M−�0 �in the −z
direction� are, respectively, total angular momenta of spin-up
and spin-down atoms. Therefore, the ground state of our sys-
tem is determined by the angular momentum difference be-
tween spin-up and spin-down atoms, say, for the first type,
the ground state corresponds to Q�z ,���=1 and w=1 so that

��1��z,��� = �
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� − �l

��2
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The first type of ground state �Eq. �14�� of the present
system has several fundamental properties. First, this state is
analogous to the Halperin’s function of two different spin
states,24 but here the two spins experience opposite effective
magnetic fields. Second, the filling factor in the FSHE is
defined by the ratio between the total number of atoms �N�
and the number of total orbital angular momentum states
�M+−M−�. One can verify that the filling factor of our sys-
tem is given by

�̄ =
2

m + n + 2w
, �15�

where, according to Eq. �14�, m=2, n=2, and w=1. Thus the
filling factor of the first type of ground state �̄=1 /3. This
factor is well known in the quantum Hall electron system.25

However, for bosonic system, this result may lead to addi-
tional insights. Third, noting that Eq. �14� is the spatial wave
function, the total wave function is obtained by multiplying
it by the spin part

A��� = �
i1. . .iN/2;j1. . .jN/2

N

�
i��i��

iN/2

�1 − �i�i��
� �

j��j��

jN/2

�1 − � j�j��
�

� �
i�=i1,j�=j1

iN/2,jN/2

�i�j�
�i�

+ � j�
− , �16�

which has also �S+� chiral–�S−� chiral antisymmetry. Here ��

are the spinor components of atoms and �i�j�
equals +1 for

i�� j�, −1 for i�� j�, and 0 for i�= j�. Finally, the angular
momentum of spin-up or spin-down atom or their total an-
gular momentum is not conserved. Nevertheless, it is inter-
esting that their angular momentum difference �Lz

+−Lz
−�

is conserved. One can verify the relation Lz
+−Lz

−=N�N
−1� / �2�̄� for our system.

Furthermore, we discuss the many-body function of the
second type. Similar to the previous discussion, one can
show the second type of ground state corresponds to
Q�z ,���=1 and w=2. Thus we have

��2��z,��� = �
i�j

N/2

�zi − zj�2�
k�l

N/2

��k
� − �l

��2

� �
u,v

N/2

�zu − �v
��2�

j,k
e−�zj�

2/2−��k�2/2. �17�

Different from ��1�, this state has the property of �S+� and
�S−� chiral symmetries. The total wave function of the second
type can be obtained by multiplying it by the spin part

S��� = �
i1. . .iN/2;j1. . .jN/2

N

�
i��i���j��j��

iN/2,jN/2

�1 − �i�i��
�

� �1 − � j�j��
� �

i��j�

iN/2,jN/2

�i�
+ � j�

− , �18�

which has �S+� chiral–�S−� chiral symmetry. The filling factor
of this state is easy to obtained by setting m=n=w=2 in Eq.
�15�, so we get �̄=1 /4. It is easy to see that the energy of
��1� is smaller than ��2�. However, the optical transition be-
tween any two states of different types is forbidden due to
the different chiral symmetries. Therefore, both type of
ground states can be adiabatically stable.

Before ending this subsection, we point out that when an
effective in-plane electric field is applied through, e.g., opti-
cal means11 or through the gravity,12 we shall obtain a trans-
verse spin current. Since the center-of-mass motion is inde-
pendent of the atom-atom interaction, the SHC is solely
determined by the filling factors similar to the charge Hall
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conductivity in the FQHE.26 For this we have FSH conduc-
tivity �xy

SH=2� e
2 . Here we keep the factor “2” to indicate the

FSH conductivity is contributed from both spin-up and spin-
down species and is then doubled.7 On the other hand, the
charge Hall conductivity is always zero due to the time-
reversal symmetry of the system.

B. Quasiparticle excitation and fractional statistics

The FSH state obtained above can be detected by measur-
ing the fractional statistical phase of the quasiparticles with a
Ramsey-type interferometer proposed in Ref. 17. The quasi-
hole excitation can be obtained by inserting a laser in the
system that create localized repulsive potential, analogy to an
impurity with positive � potential, in the atomic gas. Specifi-
cally, if we consecutively apply such two lasers, respectively,
at position �0 and �1, we can adiabatically evolve the initial
ground many-body state, say, ��1��z ,��� of the first type to
the superposition of the one- and two-quasihole state ��1�

���0

�1�+��0,�1

�1� . Then we adiabatically move the laser ini-
tially at position �0 along a closed path enclosing position
�1, and at the end of the process we get the final state by17

�F
�1��z,��� � ��0

�1� + ei �1�
��0,�1

�1� , �19�

where  = i�C��F
�1����0

��F
�1��d�0 is the statistical phase char-

acterizing the quasiholes. For the present FSH regime, this
phase has three different results depending on the types of
the created quasiholes. First, if the lasers at position �0 and
�1 couple only to the spin-up atoms, the quasiparticles at �0
and �1 correspond to spin-up atoms, say,

��0

�1� = �
j

N/2

�zj − �0���1��z,��� ,

��0,�1

�1� = �
j,k

N/2

�zj − �0��zk − �1���1��z,��� , �20�

and we obtain the statistical phase  1
�1�=2 /3. The inter-

change of such two quasiholes then gives the fractional
phase  /3, which identifies the 1/3 anyon. Second, if the
lasers at position �0 and �1 couple only to the spin-down
atoms, the quasiholes are obtained by a simple transforma-
tion z↔�� in Eq. �20� �i.e., ��0

�1�=�u
N/2��u

�−�0���1� and
��0,�1

�1� =�u,v
N/2��u

�−�0���v
� −�1���1��, and we shall obtain the

statistical phase  2
�1�=−2 /3, which is equivalent to 4 /3

and reflects the spin-down atoms experience the effective
magnetic field opposite to that the spin-up atoms do. Finally,
if the two lasers couple to both the spin-up and spin-down
atoms, we have

��0

�1� = �
j,u

N/2

�zj − �0���u
� − �0���1��z,��� ,

��0,�1

�1� = �
j,k

N/2

�zj − �0��zk − �1� � �
u,v

N/2

��u
� − �0���v

� − �1���1�

��z,��� , �21�

and the statistical phase for the quasiholes can be calculated
as  3

�1�=0. In this case the quasiparticle becomes boson. Ac-
cordingly, the statistical phases for the second type ground
state are obtained by  1

�2�=− 2
�2�= /2 and  3

�2�=0. The zero
phase in the third case actually explains the charge Hall con-
ductivity should be zero in the quantum SHE. The statistical
phase can be detected via a Ramsey-type interferometer. As a
comparison, in the FQH regime, the first type ground state
has the filling factor �=2 /3 and in the above process one can
obtain the statistical phases  1= 2=2 /3 and  3=4 /3 in
the three different cases.17 As a result, the present FSHE can
be distinguished from FQH regime in the measurement.

Now we discuss the restrictions of LLL condition em-
ployed in our system. The validity of LLL approximation
used in previous discussions is determined by three consid-
erations. First, the energy corresponding to angular momen-
tum, �l=EL /N should be smaller than the interaction energy
per particle, �int=�nag̃, where the coefficient ��1 and na

= ��
s+
�2+ �
s−

�2���mN	2�1−�� / g̃ is the atomic average
density.15 Furthermore, the latter energy should also be
smaller than the spacing between Landau levels �lan=�	. It
then follows from the two requirements that

N � min� �2

1 − �2

�2

g̃m
,

64�̄2

1 − �2

g̃m

�2 � . �22�

For weakly interacting case �g̃��2 /m�, this inequality reads
as N�

64�̄2

1−�2
g̃m
�2 , and for strongly interacting case �g̃��2 /m�,

one has N�
�2

1−�2
�2

g̃m . Besides, another condition is that the
effective magnetic flux induced by light fields can support a
sufficiently large number of vortices, for which the boundary
effect of the system can be neglected.

IV. EXPERIMENTAL CONDITIONS

First, we discuss the experimental realization of the four-
level and double �-type systems discussed above. Candidate
atoms include 87Rb, 23Na, and 7Li bosonic systems. As
an example, we consider first the 87Rb atomic system. For
the four-level system in Fig. 1�b� we employ the transi-
tions �52S1/2 ,F=1�→ �52P1/2 ,F=1� and �52S1/2 ,F=1�
→ �52P3/2 ,F=1�. The two ground states �S+� and �S−� corre-
spond to �F=1,MF= +1� and �F=1,MF=−1�, respectively,
while both �e+� and �e−� correspond to �F=1,MF=0� chosen
from 52P1/2 and 52P3/2. Note another ground sublevel �F
=1,MF=0� can also be coupled to the excited sublevel �F
=1,MF= +1��52P3/2� by the �+ light and to the �F=1,MF
=−1��52P1/2� by the �− light �Fig. 1�c��. However, one can
verify that the induced effective gauge potential on this state
�MF=0, 52S1/2� is proportional to �10

2 l1 /�1
2+�20

2 l2 /�2
2=0.

Furthermore, through the optically stimulated Raman pas-
sage in the �-type configuration in Fig. 1�d�, initially one
can pump all atoms into the sublevels �MF=�1� with equal
atomic numbers by setting ��+�= ��−�, while population of
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�MF=0� is negligible.20 Based on these results, we can safely
neglect the effects of the sublevel �MF=0� and only include
�S�� �MF=�1� in our system. Simultaneously turning off
�� and then employing the far-detuning angular-momentum
light fields �1,2 to the system, one can reach Hamiltonian �1�
and then Eqs. �3� and �4� for our model.

The double �-type system can also be realized with 87Rb
�or 23Na� atoms, which is shown in Fig. 2�b�. Although prin-
cipally the state �F=1,MF=0� �52S1/2� can be coupled by the
laser fields �1 and �2, the induced gauge field for this state,
similar as the above result, is also zero. Furthermore, initially
one can also optically pump all atoms into the sublevels
�MF=�1�, not into the state �MF=0�, as done in the four-
level configuration. In this way, the effects of the sublevel
�MF=0� can still be neglected in the double � system.

Finally, we turn to the numerical estimate of our results.
Again we consider first the four-level configuration. The en-
ergy splitting between 52P3/2�F=1� and 52P1/2�F=1� ��E1
=4.5�104 GHz� is much larger than that between
52S1/2�F=2� and 52S1/2�F=1� ��E2=6.9�103 MHz� �see
Fig. 1�b��. To avoid the couplings between the state
52S1/2�F=2� and the excited ones, we need the Rabi fre-
quency �0 of the optical fields to be also much smaller than
energy splitting ��E2� between 52S1/2�F=2� and 52S1/2�F
=1�. Practically, we can choose �1,2=0.5 GHz. Besides,
other typical values are taken as l1=−l2�103 �Ref. 13� and
f �2.5 MHz �m−1. When the spatial scale of the interaction
region is R�2.0 �m, the optical Rabi-frequencies satisfy
�0

2��2 , ��E2�2. The cyclone frequency can then be evalu-
ated by 	�30 Hz. For the 23Na system, under the same
parameter choice, we obtain the cyclone frequency 	
�110 Hz. If 	eff is tuned to be several hertz, we then have
1−��10−3. From inequality �22�, this numerical result im-
plies that for the strongly interacting boson atomic gas
�g̃��2 /m�, the number of atoms can be as large as 102 with-
out violating the LLL condition, and for the weakly interact-
ing case �g̃�0.1�2 /m� this number is about ten.

For the double �-type situation, we can set the para-
meters that �c0=1.0�102 MHz, l1=−l2�103, and f
�1.0 MHz �m−1. When the spatial scale of the interaction
region is R�10 �m, the optical Rabi frequencies satisfy
��1,2�2��c0

2 . The cyclone frequency can then be evaluated
by 	�120 Hz for the 87Rb atoms and 	�400 Hz for the
23Na system. Therefore 1−��10−3 when 	eff is tuned to be
the order of ten hertz. In this case, without violating the LLL
condition, the number of atoms can be as large as 102–3 for
the strongly interacting boson atomic gas �g̃��2 /m�, and be

a few tens for the weakly interacting case �g̃�0.1�2 /m�. We
therefore expect the many-body functions such as Eqs. �14�
and �17� obtained here can be reached with a small number
of cold atoms. Note the adiabatic condition is assumed in our
system. Atomic motion may lead to the transition between
the ground eigenstates and excited ones, which results in
decay of the ground states. The transition rate can be evalu-
ated by11,12,23 !��v ·��

��1,2�
� �+ l1,2

��1,2�
� v ·���r�� for four-level

system and !��v ·��
��1,2�
�c0

�+ l1,2
��1,2�
�c0

v ·���r�� for double �

system, where v is the velocity of the atoms. This transition
leads to the effective decays  eff�!2 e /�2 and  eff
�!2 e /�c0

2 for the four-level and double � systems, respec-
tively, with  e the decay of the excited states. Typical values
of the parameters for a BEC can be �v��1.0 cm s−1 and  e
�107 s−1. We can then estimate the life time of the atoms as
TD� eff

−1 �1.0 s for the present systems.

V. CONCLUSION

In conclusion we have proposed the fractional spin Hall
effect �FSHE� in neutral atomic system by coupling the
atomic spin states �internal angular momentum states� to op-
tical fields. We studied fundamental properties of the many-
body wave function of the present system under the LLL
condition. Especially, we show two different types of ground
states in our system. The first type of ground state is a 1/3-
factor Laughlin function and exhibits chiral-antichiral inter-
change antisymmetry, while the second type of ground state
is a 1/4-factor wave function with chiral-antichiral symmetry.
The fractional statistics of quasiparticles in the present FSH
state are studied and are discovered to be different from that
of the corresponding FQH state. Thus the present FSHE can
be distinguished from FQH regime in the measurement. Re-
alization of the present model in realistic atomic systems was
also studied.
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